Correction of susceptibility artifacts in diffusion tensor data using non-linear registration
نویسندگان
چکیده
Diffusion tensor imaging can be used to localize major white matter tracts within the human brain. For surgery of tumors near eloquent brain areas such as the pyramidal tract this information is of importance to achieve an optimal resection while avoiding post-operative neurological deficits. However, due to the small bandwidth of echo planar imaging, diffusion tensor images suffer from susceptibility artifacts resulting in positional shifts and distortion. As a consequence, the fiber tracts computed from echo planar imaging data are spatially distorted. We present an approach based on non-linear registration using Bézier functions to efficiently correct distortions due to susceptibility artifacts. The approach makes extensive use of graphics hardware to accelerate the non-linear registration procedure. An improvement presented in this paper is a more robust and efficient optimization strategy based on simultaneous perturbation stochastic approximation (SPSA). Since the accuracy of non-linear registration is crucial for the value of the presented correction method, two techniques were applied in order to prove the quality of the proposed framework. First, the registration accuracy was evaluated by recovering a known transformation with non-linear registration. Second, landmark-based evaluation of the registration method for anatomical and diffusion tensor data was performed. The registration was then applied to patients with lesions adjacent to the pyramidal tract in order to compensate for susceptibility artifacts. The effect of the correction on the pyramidal tract was then quantified by measuring the position of the tract before and after registration. As a result, the distortions observed in phase encoding direction were most prominent at the cortex and the brainstem. The presented approach allows correcting fiber tract distortions which is an important prerequisite when tractography data are integrated into a stereotactic setup for intra-operative guidance.
منابع مشابه
Diffusion tensor imaging distortion correction with T 1
Introduction Diffusion weighted single shot spin-echo planer imaging (DW-EPI) is commonly used for diffusion tensor imaging (DTI). DW-EPI is very sensitive to static magnetic field (B0) inhomogeneities (such as that near air-tissue boundary) that produce geometric distortion, primarily along the phase-encoding direction. As a result, artifacts are severe in the frontal and temporal lobes due to...
متن کاملAccounting for Changes in Signal Variance in Diffusion Weighted Images Following Interpolation for Motion and Distortion Correction
Introduction: Processing of clinical diffusion weighted images (DWIs) for Diffusion Tensor Imaging (DTI) and other applications requires correction for motion, eddy current distortions [1], and susceptibility induced EPI distortions [2]. These corrections are obtained by image registration techniques followed by interpolation of the original images. Image interpolation, however, alters the nois...
متن کاملThe efficiency of retrospective artifact correction methods in improving the statistical power of between-group differences in spinal cord DTI
Diffusion tensor imaging (DTI) is a promising approach for investigating the white matter microstructure of the spinal cord. However, it suffers from severe susceptibility, physiological, and instrumental artifacts present in the cord. Retrospective correction techniques are popular approaches to reduce these artifacts, because they are widely applicable and do not increase scan time. In this p...
متن کاملHyperelastic Susceptibility Artifact Correction of DTI in SPM
Echo Planar Imaging (EPI) is a MRI acquisition technique that is the backbone of widely used investigation techniques in neuroscience like, e.g., Diffusion Tensor Imaging (DTI). While EPI offers considerable reduction of the acquisition time one major drawback is its high sensitivity to susceptibility artifacts. Susceptibility differences between soft tissue, bone and air cause geometrical dist...
متن کاملCorrection of vibration artifacts in DTI using phase-encoding reversal (COVIPER)
Diffusion tensor imaging is widely used in research and clinical applications, but still suffers from substantial artifacts. Here, we focus on vibrations induced by strong diffusion gradients in diffusion tensor imaging, causing an echo shift in k-space and consequential signal-loss. We refined the model of vibration-induced echo shifts, showing that asymmetric k-space coverage in widely used P...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Medical image analysis
دوره 11 6 شماره
صفحات -
تاریخ انتشار 2007